Conformation Change, Tension Propagation and Drift-Diffusion Properties of Polyelectrolyte in Nanopore Translocation

نویسندگان

  • Pai-Yi Hsiao
  • Martin Kröger
چکیده

Using Langevin dynamics simulations, conformational, mechanical and dynamical properties of charged polymers threading through a nanopore are investigated. The shape descriptors display different variation behaviors for the cisand trans-side sub-chains, which reflects a strong cis-trans dynamical asymmetry, especially when the driving field is strong. The calculation of bond stretching shows how the bond tension propagates on the chain backbone, and the chain section straightened by the tension force is determined by the ratio of the direct to the contour distances of the monomer to the pore. With the study of the waiting time function, the threading process is divided into the tension-propagation stage and the tail-retraction stage. At the end, the drift velocity, diffusive property and probability density distribution are explored. Owing to the non-equilibrium nature, translocation is not a simple drift-diffusion process, but exhibits several intermediate behaviors, such as ballistic motion, normal diffusion and super diffusion, before ending with the last, negative-diffusion behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polymer Translocation Through a Nanopore: A Geometry Dependence Study

The translocation of a single stranded nucleic acid polymer through a nanopore, by an external electric field applied across the pore, may be well described by a 1-D drift-diffusion model. Translocation times and velocities are calculated for a homopolymer driven through a nanopore, where the polymerpore interaction dominates the polymer dynamics. In this model a purely electrostatic polymer-po...

متن کامل

Electrophoresis of a polyelectrolyte through a nanopore.

A hydrodynamic model for determining the electrophoretic speed of a polyelectrolyte through a nanopore is presented. It is assumed that the speed is determined by a balance of electrical and viscous forces arising from within the pore and that classical continuum electrostatics and hydrodynamics may be considered applicable. An explicit formula for the translocation speed as a function of the p...

متن کامل

Determination of Molecular Weights in Polyelectrolyte Mixtures Using Polymer Translocation through a Protein Nanopore

We introduce a single molecular analysis technique for the evaluation of molecular weight distributions of polyelectrolyte solutions by measuring translocation times of sodium polystyrenesulfonate (NaPSS) chains in a mixture passing through an α-hemolysin protein nanopore. The ionic current through an α-hemolysin nanopore is partially blocked transiently when the pore is occupied by a polymer c...

متن کامل

On the distribution of DNA translocation times in solid-state nanopores: an analysis using Schrödinger's first-passage-time theory.

In this short paper, a correction is made to the recently proposed solution of Li and Talaga to a 1D biased diffusion model for linear DNA translocation, and a new analysis will be given to their data. It was pointed out by us recently that this 1D linear translocation model is equivalent to the one that was considered by Schrödinger for the Ehrenhaft–Millikan measurements on electron charge. H...

متن کامل

Polymer translocation through a nanopore: Impact of fluctuations on dynamical scaling

We suggest a theoretical description of the force-induced translocation dynamics of a polymer chain through a nanopore. Consideration is based on the tensile blob picture of a driven chain and the notion of a propagating front of tensile force along the chain backbone, suggested by Sakaue (Phys. Rev. E 81, 041808 (2010)). The driving force is associated with a chemical potential gradient that a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016